Irregularity strength of digraphs
نویسندگان
چکیده
It is an elementary exercise to show that any non-trivial simple graph has two vertices with the same degree. This is not the case for digraphs and multigraphs. We consider generating irregular digraphs from arbitrary digraphs by adding multiple arcs. To this end, we define an irregular labeling of a digraph D to be an arc labeling of the digraph such that the ordered pairs of the sums of the in-labels and out-labels at each vertex are all distinct. We define the strength ~s(D) of D to be the smallest of the maximum labels used across all irregular labelings. Similar definitions for graphs have been studied extensively and different formulations of digraph irregularity were given in [15], [12]. In the latter, but not the former reference, the measure involves adding additional vertices. Here we continue the study of irregular labelings of digraphs. We give a general lower bound on ~s(D) and determine ~s(D) exactly for tournaments,! directed paths and cycles and the orientation of the path where all vertices have either in-degree 0 or out-degree 0. We also determine the irregularity strength of a union of directed cycles and a union of directed paths, the latter which requires a new result pertaining to finding circuits of given lengths containing prescribed vertices in the complete symmetric digraph with loops.
منابع مشابه
Total vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملA note on vague graphs
In this paper, we introduce the notions of product vague graph, balanced product vague graph, irregularity and total irregularity of any irregular vague graphs and some results are presented. Also, density and balanced irregular vague graphs are discussed and some of their properties are established. Finally we give an application of vague digraphs.
متن کاملOn Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
متن کاملMore skew-equienergetic digraphs
Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this paper, we give some new methods to construct new skew-equienergetic digraphs.
متن کاملIrregular total labeling of disjoint union of prisms and cycles
We investigate two modifications of the well-known irregularity strength of graphs, namely, a total edge irregularity strength and a total vertex irregularity strength. Recently the bounds and precise values for some families of graphs concerning these parameters have been determined. In this paper, we determine the exact value of the total edge (vertex) irregularity strength for the disjoint u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 309 شماره
صفحات -
تاریخ انتشار 2009